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Interfacial stability of two-layer Couette flow was investigated experimentally in a 
channel bent into an annular ring. This paper is focused on the supercritical long-wave 
instability which arises for a broad range of flow parameters. Above the critical upper 
plate velocity, a slowly growing long wave appears with wavelength equal to the 
perimeter of the channel. Transients of this wave were studied within the theoretical 
frame of amplitude equations obtained from the long-wave interface equation. Near 
the onset of instability, the unstable fundamental harmonic is described by the 
Landau-Stuart equation, and the nonlinear dynamics of the harmonics closely follows 
the central and slaved modes analysis. For the higher upper plate velocity, harmonics 
gain some autonomy but they eventually are enslaved by the fundamental, through 
remarkable collapses of amplitudes and phase jumps leading to wave velocity and 
frequency locking. Dispersive effects play a crucial role in the nonlinear dynamics. Far 
from the threshold, the second harmonic becomes unstable and bistability appears: the 
saturated wave is dominated either by the fundamental harmonic, or by the even 
harmonics, after periodic energy exchange. 

1. Introduction 
This paper describes a study of the stability of the interface between two superposed 

viscous layers in plane Couette or Poiseuille flow (figure 1). This problem primarily 
concerns low Reynolds number flows, but it also provides some essential ideas about 
the instability mechanisms involved in sheared interfaces. This problem has been 
investigated in numerous theoretical studies since Yih’s (1967) work; in contrast, very 
few experimental results are available. To our knowledge, only two papers have been 
published, and both concern Poiseuille flows of oil and water in horizontal channels of 
rectangular cross-section. 

Charles & Lilleleht (1965) showed that the presence of the second fluid affects the 
transition to turbulence of the first fluid. More precisely, a small flow rate of oil delays 
the transition to turbulence in the water, while an already turbulent water flow lowers 
the critical Reynolds number for the oil flow. The transition to turbulence is associated 
with short interfacial waves, travelling at the same velocity as the patches of turbulence 
in the water. Increasing the Reynolds number leads to large two-dimensional waves 
and to roll waves, which propagate much slower than the water. 

Kao & Park (1972) studied spatial growth rates of artificially as well as naturally 
excited shear waves, together with vertical distributions of the amplitude and phase of 
these disturbances. They were able to plot the neutral stability curve in (Re, k)-plane, 
where Re is the Reynolds number of the water and k is the wavenumber of the 
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FIGURE 1 .  Plane two-layer Couette flow (left) and Poiseuille flow (right). 

disturbance. The critical Reynolds number agrees with that of Charles & Lilleleht. 
When a vibrating ribbon was placed close to the interface, true interfacial modes were 
excited, but they were always found to be damped under the flow conditions explored. 
The characteristic of these interfacial modes was the strong decay of their amplitude 
away from the interface, while shear modes were symmetric with respect to the mid- 
depth of the water. 

It should be noted that in these two experimental studies of Poiseuille flow, the 
interfacial perturbations were induced by the turbulence in one fluid layer. In contrast, 
for two-layer Couette flow no experimental results are available. 

Despite a lack of experimental data, numerous theoretical studies have been carried 
out. For Poiseuille flow, the linear stability problem was first solved by Yih (1967) for 
long waves, and then numerically by Yiantsios & Higgins (1988), for arbitrary 
wavenumber. These latter authors identified the critical Reynolds number for the 
interfacial mode as being well above the range of Reynolds numbers explored by Kao 
& Park. This could explain why Kao & Park did not observe any interfacial instability. 
Nevertheless, the predicted critical Reynolds number for the transition to turbulence 
was found to be even greater: more than seven times the experimental one! Yiantsios 
& Higgins suggests that such a dramatic discrepancy could be explained either by the 
sidewall effects in the experiments (although the aspect ratio of Kao & Park was 1 : S), 
or by nonlinear subcritical instability. 

For plane Couette flow, Yih showed that the basic flow may be unstable to long- 
wavelength disturbances for arbitrarily small Reynolds numbers, owing to viscous 
stratification, when gravity is not sufficiently stabilizing. Stability to disturbances with 
wavenumber kh, = O( 1) (where h, is the thickness of the lower layer) was investigated 
numerically by Renardy (1985, 1987). She showed the existence of a low critical 
Reynolds number for these kh, = O( 1) disturbances, for parameter values cor- 
responding to long-wave stability. Hooper & Boyd (1983) showed the existence of a 
short-wave instability but, as pointed out by Hinch (1984), this instability is always 
overcome by the stabilizing effect of surface tension. Finally, Hooper & Boyd (1987) 
showed that the flow can be unstable to ‘Tollmien-Schlichting type’ waves when one 
viscous lengthscale is short compared with both the wavelength and the thickness of 
the lower layer. 

A physical mechanism for the short-wave instability has been proposed by Hinch 
(1984). This mechanism is based on diffusion and convection of the vorticity generated 
at the sheared interface by velocity disturbances. However, the physical mechanism for 
the long wave and the kh, = O(1) instabilities remains unclear. The long-wave 
mechanism proposed by Smith (1990) for free falling films is appealing, but it accounts 
for neither the crucial role played by the viscosity ratio, nor the stabilizing or 
destabilizing influence of the walls. An analysis involving the energy equation, such as 
that made by Kelly et al. (1989) for free falling films, would shed some light on these 
questions. 
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The nonlinear behaviour of long waves has been examined using perturbation 
methods and bifurcation theory. The leading equation for interfacial long waves with 
high surface tension is the Kuramoto-Sivashinsky (KS) equation (Hooper & Grimshaw 
1985; Shlang et al. 1985). Hooper & Grimshaw showed by numerical integration of the 
KS equation that periodic waves can be sustained when the fundamental harmonic, or 
the first two harmonics, are the only unstable modes, the other harmonics being 
stabilized by surface tension. Inspired by the theoretical work of Cohen et al. (1976), 
they interpreted these nonlinear waves as a ‘two modes equilibrium’ or as a ‘bouncy 
state’. The two modes equilibrium corresponds to an unstable harmonic stabilized by 
the energy that it supplies to a stable higher harmonic. The bouncy state has been 
shown to correspond to an intermittent solution where a two-mode equilibrium 
periodically vanishes and rises again, with its phase shifted by n/2 (Kevrekidis, 
Nicolaenko & Scovel 1990; Demekhin, Tokarev & Shkadov 1991). 

However, the usefulness of the KS equation for describing long interfacial waves is 
questionable for two reasons. The first is that this equation involves small Weber 
number, namely W e  = O((kh,)2), which is only valid for very thin films. The second 
reason is that the KS equation does not involve any dispersive term, but Chang, 
Demekhin & Kopelevich (1993) have shown that linear dispersion tends to arrest 
irregular behaviour and promotes stationary spatially periodic waves, in agreement 
with experiments on falling films (Liu, Paul & Gollub 1993). These two deficiencies of 
the KS equation for describing long interfacial waves have been overcome by Charru 
& Fabre (1994): they included the next order in the long-wave parameter, by which 
linear dispersion is taken into account, with a less restrictive condition on the Weber 
number, i.e. W e  = O(kh,). 

Apart from the above studies, Renardy (1989) derived the Landau-Stuart equation 
for the amplitude of the marginally stable interfacial mode, using bifurcation theory. 
She showed that linearly unstable waves with wavenumber kh, = O(1) may saturate, 
corresponding to supercritical bifurcation. 

Experimental work for two-layer Couette flow is therefore needed, to confirm the 
existence of these predicted interfacial instabilities, and to test the value of existing 
nonlinear studies; these are the objectives of this paper. An experimental device has 
been designed which overcomes the difficulty of constructing a suitable straight 
channel, and yet is appropriate for nonlinear wave studies. This device and the basic 
flow are described in $2. The experimental evidence for long-wave and kh, = O(1) 
instabilities is reported in $ 3, along with the corresponding marginal stability results. 
Saturated waves are described in $4. The rest of the paper is devoted to the long wave; 
short-wave dynamics are left for a later paper. In $ 5 ,  within the theoretical frame of 
amplitude equations for spatially confined systems, the transients of the supercritical 
long wave are studied. The results are finally summarized and discussed in $6. 

2. Experimental set-up and basic flow 
2.1. Experimental device and instrumentation 

The difficulty of achieving Couette flow in a straight channel comes from the 
realization of the upper wall motion, and from the set-up length of the basic flow. 
These difficulties have been overcome by bending a channel of rectangular cross- 
section into a ring, so that its ends meet (figure 2). The rotation of the rigid upper plate 
around the axis of the ring drags the fluids. However, owing to the radial velocity 
gradient and centrifugal inertia forces, the velocity field may be distorted and further 
instability generated. The dimensions of the channel were set to minimize these 
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a 

FIGURE 2. Sketch of the experimental device. See text for description. 

drawbacks. This arrangement has the following advantages : shearing is achieved by a 
rigid plate without any vibrations, flows are fully developed without any entry or 
discharge sections, and wave evolution can be observed over long periods of time. 
Moreover, the maximum allowed wavelength is equal to the perimeter of the channel, 
and all waves are expected to be spatially periodic. 

The channel is grooved in a Plexiglas plate 1 (figure 2) lying on the support 6. Its 
mean diameter is D = 400 mm so that the radial acceleration is less than 1 % (resp. 
10 YO) of gravity for upper plate velocities less than 0.14 m s-' (resp. 0.44 m s-l). The 
width W of the channel is 40 mm, and its depth H is 20 mm. The rotating plate 2 
consists of a Plexiglas crown screwed on an aluminium disk. It is guided by three balls 
3 distributed at 120" of each other on the plate 1. The upper plate is driven by a vertical 
DC servomotor 4 through a flexible coupling 5. Air bubbles created during the filling 
of the channel can be removed by suction with a syringe through two small holes bored 
in the upper plate. 

The interface position is measured with two conductance probes 7, located at the 
mid-cross-section, taking advantage of the contrast in conductivities of the two fluids. 
Each probe is made of two stainless steel wires, separated by 6 = 3 mm. The diameter 
and the length of these electrodes are 0.3 and 18 mm respectively. The wake of the 
probes is less than 5 cm long, and induces negligible disturbances under the explored 
flow conditions. The distance between the probes is 307mm, so that there is no 
electrical coupling. These local probes respond linearly to interface deflections, and do 
not generate harmonics. They integrate the interface height over space, and thus 
behave as a low-pass filter with a gain of exp(k6/2). The resulting attenuation is 
negligible for the observed waves. 

The exploration of the dependence of wave evolution on upper plate velocity is 
monitored and controlled by a computer. A given velocity level is reached from rest 
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Fluid Label Y (Pa 4 P (kg m-3) Y (Pa m) m = p2/ru1 = P2/P1  
- Bayole 82 (mineral oil) 2 0.0297 846 - - 

Water-Glycerine (1 5-85 YO) la  0.111 1214 0.030 0.268 0.697 
Water-Glycerine (32-68 %) l b  0.0191 1169 0.030 1.55 0.724 
Water-Glycerine (37-63 YO) lc 0.0121 1155 0.030 2.45 0.732 
Water-Glycerine (42-58 YO) Id 0.0108 1142 0.030 2.76 0.741 

TABLE 1. Physical fluid properties at T = 20 "C 

with an acceleration of about 1 mm sP2. The interface position recording starts when 
the basic flow is established a few seconds later, and may last for one hour. A typical 
measurement cycle comprises a succession of increasing and decreasing velocity ramps 
and levels. Temperature is measured with a thermocouple fixed at the bottom of the 
channel, and does not vary during a run. More details on the experimental device can 
be found in Charru (1991). 

However small the upper plate velocity, time records show a small-amplitude wave, 
barely visible to the naked eye, with a frequency equal to the rotation frequency 
f = U / z D  of the upper plate. This wave corresponds to the forcing of the interface by 
the geometrical imperfections of the channel and is not caused by an instability. This 
parasitic wave does not alter interfacial instabilities and has been systematically 
eliminated by stop-band filtering. Indeed, any nonlinear interaction would appear on 
spectra as peaks with frequencies equal to linear combinations of the forcing frequency 
and free-wave frequencies: such peaks cannot be detected on spectra. 

2.2. Working fluids 
Several combinations of fluids have been tested in order to vary the viscosity ratio. The 
upper fluid is a mineral oil (Bayole 82, Esso). The lower fluid is a mixture of distilled 
water and glycerine, whose viscosity (and density to a lesser degree) depends on their 
proportions. Appropriate conductivity for the water-glycerine mixture was obtained 
by adding potassium chloride. The physical properties of these fluids are indicated in 
table 1. The variation of the viscosities with temperature was determined with a 
Carrimed rheometer in the range 1624 "C. Although viscosities decrease by about 
50 % in this range, their ratio remains approximately constant. Finally, the surface 
tension y was measured with a TD1 Lauda device: it appears to be independent of the 
composition of the wa ter-glycerine mixture. 

2.3. Dimensionless parameters 
The plane Couette flow of two superposed layers involves six independent 
dimensionless parameters. They are the layer thickness ratio d, the viscosity ratio m and 
the density ratio r ,  together with one Reynolds number, one Froude number and one 
Weber number, defined as follows: 

where subscripts 1 and 2 refer to the lower and upper fluids respectively, and where Ur 
is the interface velocity linked to the upper plate velocity U through: 

mU u -- 
' - m + d '  
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FIGURE 3. Azimuthal velocity field in the cross-section of the channel, for aspect ratio W / H  = 2, 
and for Re = 25, 100,200, 500 (a-d). 

The values of m and r for the working fluids are given in table 1. The Reynolds number 
Re, for the upper fluid can be expressed with the above parameters, from continuity 
of the shear stress across the interface: 

h2(U-U1) rd2 
Re, = = -Re,. m2 

V 2  
(3) 

2.4. Basic Jlo w 
The velocity field of the basic flow in the annular ring has been investigated both 
numerically and experimentally. The numerical study was carried out for a single- 
phase flow by numerical simulation of the time-dependent Navier-Stokes equations 
based on the finite volume method (Magnaudet, Rivero & Fabre 1995). The 
experimental study was performed by laser-Doppler velocimetry (LDV), for both 
single-phase and two-phase flows. Only measurements of the azimuthal velocity are 
reported here. The low concentration of particles due to sedimentation allowed only 
the sign of the radial and vertical components of the velocity to be measured. 

For a single-phase flow, figure 3 shows the azimuthal velocity field in the cross- 
section of the channel obtained by numerical simulation, for Reynolds numbers 
Re = U H / v  ranging from 25 to 500, where U is the upper plate velocity in the middle 
of the channel. It appears that, for Re = 25, the vertical velocity profile is linear in the 
middle half of the span of the channel. For Re > 100, the flow is no longer symmetric, 
with higher velocities near the outer sidewall, and the vertical velocity profiles exhibit 
an inflexion point for Re > 200. Figure 4 shows isovalues of the azimuthal velocity and 
the secondary flow in the cross-section of the channel, for Re = 100. The maximum 
velocity of the secondary flow is less than 0.07U. These calculations are confirmed by 
measurements of the azimuthal velocity, as shown in figure 5. Thus, for Re < 25, the 
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FIGURE 4. Isovalues of the azimuthal velocity (a) and secondary flow (b) in the cross-section of the 
channel for Re = 100. The isovalues correspond to 0.2, 0.4, 0.6, 0.8 and 1 times the upper plate 
velocity U in the middle of the channel. The maximum velocity of the secondary flow is less than 
0.OlU. 

flow is close to plane Couette flow in the middle half of the span of the channel. Finally, 
as the code allows time-dependent solutions to be captured, it must be pointed out that 
no instability occurred for Re < 1000. 

The basic two-phase flow has only been investigated experimentally, owing to the 
difficulty of numerical simulation of a deformable interface. Figure 6 compares the 
theoretical plane Couette flow to measurements of the vertical profile of the azimuthal 
velocity in the middle of the channel, for four values of the Reynolds number. These 
experimental Reynolds numbers were defined with the estimated interfacial velocity 
given by (2). No measurement could be performed in the red-coloured upper fluid. 
Assuming a linear velocity profile in this upper layer, it can be checked that the ratio 
of the velocity gradients at the interface is equal to the inverse of viscosity ratio, as 
predicted by continuity of shear stress for plane flow. The higher value of these velocity 
gradients shows a higher shear stress at the interface and corresponds to enhanced 
dissipation due to the secondary flow. For Re, = 47, the experimental and theoretical 
profiles are close, but for larger Reynolds numbers, the actual velocity is smaller than 
the theoretical one. (Note that the experimental Reynolds number is defined with the 
estimated interfacial velocity given by (2).) We have verified that for Re, = 47, the flow 
remains close to plane Couette flow in the middle half of the span of the channel. 
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FIGURE 5. Vertical profiles of the azimuthal velocity in the middle of the channel for the single-phase 
flow: numerical simulation (-) and measurements (m) for Re = 25, 100, 200, 500 (a-d). Velocity 
and depth are normalized with the upper plate velocity and total depth. 

Finally, experimental investigation of the two-phase flows shows that the basic flow 
in the middle half of the span of the channel differs by less than 10% from plane 
Couette flow, for Reynolds number Re, smaller than 50. 

3. Marginal stability results 

3.1. The two kinds of waves 
At small upper plate velocities, the interface remains flat. When the plate velocity is 
increased, two kinds of waves with quite different wavelength are observed, depending 
on the values of the viscosity and thickness ratios m and d. 

The first wave is characterized by a wavelength equal to the perimeter of the channel 
(i.e. h = 7cD = 1257 mm), which corresponds to a dimensionless wavenumber 
kh, = 27chJh z 0.05. This wave will be referred to as ‘the long wave’. Figure 7(a) 
shows time records of the position of the interface, below and above the critical upper 
plate velocity U ,  (where the subscript L refers to the long wave). The frequency of this 
wave is rather low, around 0.1-0.3 Hz, and its amplitude is a few tenths of a millimetre. 
The order of magnitude of the critical velocity is around 0.1-0.6 m s-l, which 
corresponds to Reynolds numbers of about 100-500 for the less viscous fluid. As will 
be shown in $4, this bifurcation is generally supercritical. However, for thickness ratios 
typically close to one, the bifurcation is subcritical, with hysteresis and a finite jump of 
the amplitude at the threshold. 

The wavelength of the second wave is about 40mm, which is comparable to 
the depth of the channel, and corresponds to a dimensionless wavenumber 
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FIGURE 6. Vertical profiles of the azimuthal velocity in the middle of the channel for the two-phase 
flow: plane Couette flow (-) and measurements (m) for Re, = 47,97,190 and 237 (a-d) (m = 2.2, 
d = 0.33). Velocity and depth are normalized with the upper plate velocity and the total depth. 

k = 27chJh = O(1). Figure 7(b)  displays time records of this wave, which will be 
referred to as ‘the short wave’ for simplicity, although it is not strictly a short wave. 
The frequency of this wave is about 7 Hz. The critical upper plate velocity Us (where 
the subscript S refers to the short wave) and the corresponding Reynolds numbers are 
slightly higher than for the long wave. Within the explored flow conditions, this 
bifurcation was always supercritical. 

The short wave can appear when the long wave is already present, leading to the 
superposition of the two waves, as shown in figure 7(c).  The short wave first grows on 
the crest of the long wave, then spreads all over the interface, and finally ‘kills ’ the long 
wave. 

3.2. Marginal stability curves 
Figure 8 shows the critical upper plate velocities versus the thickness ratio d, for three 
different viscosity ratios rn > 1, corresponding to the upper fluid being more viscous 
than the lower. Qualitative features of the marginal stability curves are the same for the 
three viscosity ratios. 

For small d (small upper layer thickness), the long wave appears first. As the upper 
plate velocity is increased further, the short wave appears on the crest of the long wave 
as shown in figure 7(c).  For greater thickness ratios, the two critical velocities U, and 
Us are larger, but their difference is smaller, such that the two marginal curves intersect 
for some d < 1. This explains why the short wave first appears on the crest of the long 
wave: indeed, on the long-wave crest, the local thickness ratio is smaller, and thereby 
the critical velocity Us is smaller too. 

Above the intersection point, the short wave appears first. Once this short wave is 
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FIGURE 7. Time evolution of the interface position. (a) Long wave for U l U ,  = 0.97, 1.06, 
1.33, U ,  = 0.138 m s-I, fluids (ld-2), d = 0.25. (b)  Short wave for U / U ,  = 0.995, 1.01, 1.07, 
Us = 0.575 m s-l, fluids (lb-2), d = 0.42. (c) Short wave arising on the long wave and then killing 
it. U l U ,  = 2.63, 2.71, 2.76, 2.80, U J U ,  = 2.65, U, = 0.185 m s-l, fluids (lb2), d = 0.25. 

established, no long wave has been observed. This could mean either that the short 
wave prevented the growth of the long wave, or that the critical velocity for the long 
wave had not been reached. 

The variation of the long-wave velocity with the thickness ratio and the viscosity 
ratio are presented in figure 9. The dimensionless wave velocity c / U ,  decreases for 
increasing d and decreasing m. The actual interface velocity U, can be estimated from 
LDV measurement for one case only (figure 6); for this case, the wave velocity is close 
to c z 0.93U1. 

3.3. Comparison with linear stability theory 
The above results can be compared with the solution of the linear stability problem for 
the plane Couette flow (Orr-Sommerfeld equations). This problem was first solved for 
long waves by Yih (1967), then for short waves by Hooper & Boyd (1983, 1987), and 
by a numerical method by Renardy (1985). 

Taking the lower layer thickness h, and the interface velocity U,  as characteristic 
scales, the dimensionless angular frequency w and growth rate cr for long waves are 

w = kc, - k3M, with c, = 1 + L(m, d ) ,  M = M(m, d ) ,  (4 a) 

(4 b)  cr=Re,k2 R-- , with R=R,(m,d,r)-- S=S(m,d) ,  

where co is the wave velocity for k = 0. The dispersive term M(m, d )  has been calculated 
by Charru & Fabre (1994). The coefficient S(m,d) is positive for any value of m and 
d. For flow conditions such that R,(m,d,r) < 0, the flat interface is stable for any 

S { Z} Fr ' 
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FIGURE 8. Critical velocities versus thickness ratio for the long wave (+), the short wave (a) 
and the subcritical long wave (O), for viscosity ratio rn = 1.55, 2.45 and 2.76 (a-c). 
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FIGURE 9. Dimensionless long-wave velocity c/ U ,  versus thickness ratio, for viscosity ratio 
rn = 1.55 (O), 2.45 (0) and 2.76 (+), 

Reynolds, Froude or Weber numbers. For R,(rn, d, r )  > 0, the flow is unstable owing 
to viscous stratification however small the Reynolds number. This viscous instability 
may be overcome by the stabilizing effect of gravity when the densities are not equal. 
Nevertheless, (4b) shows that this viscous instability can always be driven out for 
Froude number greater than 
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Couette flow Cubic profile Experiments 

U,  (m s-l) 0.76 0.50 0.29 

TABLE 2. Comparison of the theoretical critical velocities U, to the experimental one, 
for fluids (1 c-2) with thickness ratio d = 0.33 

where Bo = We/Fr = pghq/c is the Bond number. From ( 5 )  and from the definition of 
the Froude number, the critical velocity for a given flow can easily be obtained. 
Equation ( 5 )  also shows that long waves are destabilized first, which explains why the 
observed long wave has wavelength equal to the perimeter of the channel, which is its 
maximum allowed length. 

However, the experimental value for the critical velocity is three or four times 
smaller than the theoretical one for plane Couette flow obtained from (5) .  Thus, the 
theoretical marginal stability curves have not been included in figure 8, since they are 
well above the experimental points. This discrepancy may be because the corresponding 
Reynolds number Re, is between 200 and 600. First, for such values of the Reynolds 
number, the flow is far from plane Couette flow, with a secondary flow and an inflexion 
point in the vertical profile of the azimuthal velocity. Secondly, Yih's solution may be 
no longer valid, since it assumes Re = O(1). 

To clarify this point, and following Yih (1967), the Orr-Sommerfeld equations have 
been solved for long waves with one experimental velocity profile measured just below 
the critical velocity U,. This profile has been fitted accurately with a cubic polynomial 
in the lower fluid, keeping a linear profile in the upper layer. The velocity profile has 
been assumed self-similar as the upper plate velocity is varied, and the second flow has 
been ignored. 

With such a cubic velocity profile, the critical upper plate velocity is lower than for 
Couette flow, but remains 75 YO above the experimental one, as shown in table 2. Since 
the eigenfunctions are the same, the nature of this long-wave interfacial instability is 
the same for both flows. The remaining discrepancy between critical velocities is 
probably due to tridimensional effects like the radial gradient of azimuthal velocity and 
secondary flow. 

Finally, even if such a discrepancy between the theoretical predictions and the 
experimental results remains, the observed long-wave interfacial instability seems to 
correspond well to that found by Yih. 

4. Saturated long waves 
Figure 10 shows the saturated amplitude A,,, of the long wave, defined as half the 

crest-to-trough distance, versus upper plate velocity. The saturated amplitudes have 
been determined for increasing and then decreasing velocities. 

Figure 10 (a)  corresponds to the supercritical case, the amplitude varying 
continuously as the upper plate velocity crosses its critical value, without any 
hysteresis. The power law can be determined from a log-log plot, and the critical 
exponent is found to be 1/2: 

The saturated amplitude departs from the osculating parabola for U -  1.4UL with 
amplitudes smaller than predicted by the above power law, and remains smaller than 
1 mm. 

Asat - ( U -  UL)''2. (6) 



Interfacial long waves in a two-layer shear flow 35 

Upper plate velocity (m s-1) Upper plate velocity (m s-1) 

FIGURE 10. Amplitude of the saturated wave versus upper plate velocity, for increasing (+) and 
decreasing velocity (0). (a) Supercritical long wave, fluids (ld-2), d = 0.33; -, osculating 
parabola. (b) Subcritical long wave, fluids (1b2), d = 0.82. 
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FIGURE 11. Rapid growth of the subcritical long wave, fluids (1b2), d = 0.82, U = 0.74 m/s. 

Figure 10(b) corresponds to the subcritical case. As the critical upper plate velocity 
is reached, the long wave suddenly appears, growing very quickly and reaching an 
amplitude greater than 1 mm. Figure 11 shows such an explosive growth. The 
amplitude grows slightly as the velocity is increased further, whereas the wave persists 
after the velocity is decreased below its critical value. This hysteresis and the finite jump 
of the amplitude at the threshold are characteristics of subcritical instabilities. 

The rest of this paper is focused on the supercritical long wave. Figure 12 shows the 
evolution of the wave shape and the corresponding frequency spectra, as the velocity 
is increased beyond the onset of instability (amplitudes are normalized with the 
saturated amplitude for U / U ,  = 1.77). Just above the onset of instability, the long 
wave appears sinusoidal (see also figure 7). Then the wave shape distorts rapidly, with 
steep fronts and sharp troughs, corresponding to the growth of harmonics. Moreover, 
the frequency spectra, plotted on a semi-logarithmic scale, show that near the onset of 
instability, the vertices of the peaks are aligned. This means that the amplitude A ,  of 
the nth harmonic is proportional to A:: 

A ,  - A:. (7) 

This usual assumption in perturbation methods and ‘weakly nonlinear’ wave theory is 
known to be valid near the onset of instability, and its domain of validity corresponds 
roughly to that of the power law given by (6). Beyond the limit U - 1.4UL, the 
amplitudes of the harmonics are higher than predicted by the above relation. 
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FIGURE 12. Time evolution of the interface position and frequency spectrum for the long wave, for 
U / U ,  = 1.06, 1.13, 1.33, 1.58 and 1.77 (a-e). Amplitudes are normalized with the saturated amplitude 
for U / U ,  = 1.77. Fluids (ld-2), d = 0.25, U, = 0.138 m s-l. 

5. Transients of the supercritical long wave 
5.1. Spectrum evolution during the growth of the wave 

The preceding subsection showed that saturated waves involve an increasing number 
of harmonics as the velocity is increased beyond the threshold of instability. We now 
address the question of the growth of these harmonics, by considering the time 
evolution of the long wave from the flat interface up to saturation for fixed upper plate 
velocity U > U,. This velocity is reached from rest in 10 s. The timescale for the basic 
flow to be established by viscous diffusion is about 0.25W/v, where H is the total 
channel depth and Y is the kinematic viscosity of the less viscous fluid. This timescale 
is about 5 s. The timescale for the wave growth is much larger, so that one can consider 
that instabilities grow on a steady flow. As the recording starts, the basic flow is well 
established and instabilities have not yet reached a significant amplitude. 

As shown in figure 13, the time for saturation 7 is shorter with higher upper plate 
velocity, and follows the classical power law for critical phenomena: 

7 N ( U -  U J 1  (8) 
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FIGURE 14. Saturation time 7 for the long wave versus upper plate velocity. 
Fluids (ld-2), d = 0.33. 

as the upper plate velocity U approaches its critical value U, from higher values (figure 
14). These very long transients allow detailed study of the growth of the harmonics. 
Figure 15 shows the evolution of the frequency spectrum with time, for fixed 
U =  1.33UL. It can be seen that at the first stage of its growth, the long wave is 
dominated by its fundamental harmonic k ,  = 2n/xD, that harmonics grow as the 
amplitude increases, and that the spectrum stops evolving as soon as saturation is 
reached. More information can be obtained from the time records by reconstructing 
the amplitude and phase of each harmonic. The corresponding signal processing 
technique is described in the following subsection. 

5.2. Signal decomposition 
The problem is to obtain the amplitude and the phase of each harmonic of the interface 
position ~(x, t) ,  from the signal recorded at the probe location x = 0. On the one hand, 
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FIGURE 15. Evolution of the frequency spectrum with time, during the long-wave growth. 
The time evolution is the trace in figure 13(c). 

spatial periodicity enables the interface position to be considered as the sum of its 
spatial Fourier components, each with wavenumber kn = nk,, where k ,  is the 
wavenumber of the fundamental harmonic. On the other hand, frequency spectra 
exhibit well-defined peaks (figure 15), with frequencies in multiples of the fundamental 
frequency, at the sampling accuracy. Thus, the interface position can be written as 

(9) 
1 "  ~(x, t )  = - x An(t)ein(wyt-klx) with A _ ,  = A:, 

where An(t)  is the complex amplitude of the nth spatial harmonic, and where 

of its growth, or 'linear angular frequency'. 
It must be stressed that, if the wavenumber k ,  = nk, is the actual wavenumber of the 

nth harmonic, the frequency nw: cannot be considered as its actual frequency w,. The 
actual frequency may vary a little, owing to possible small dispersive effects (see (4)) or 
finite-amplitude effects as the amplitude grows. (This small frequency shift may not be 
identified in the spectra owing to the time averaging involved in the Fourier transform.) 
The slow variation $n(f) of the phase corresponding to this small frequency shift is 
taken into account in the complex amplitude. Thus the amplitude A,(t) is 

2 n=-m 

wo , = - w(k,,  t+ 0) is the angular frequency of the fundamental harmonic at the first stage 

A,(t)  = IA,(t)l ei#Jt). (10) 

Placing the origin of the x-axis at the probe location, the measured interface position 
is 

Thus, the instantaneous phase Q n ( f )  and angular frequency w,(t) of the nth harmonic 
are 

QJt) = nw: t+$,(t), w,(t)  = nwy+d$,/dt. ( 1 2 4  b) 



Interfacial long waves in a two-layer shear flow 39 

The first step of the signal processing is to extract from the time record ~ ( 0 ,  t )  the 
contribution T,(t) of the nth harmonic. This is achieved by band-pass filtering centred 
on nwy with a bandwidth equal to 0 .24 ,  and using a fourth-order Chebyshev filter. 
In order to keep the same time origin for all the harmonics, any phase distortion is 
cancelled by processing the signal for increasing and decreasing time. The contribution 
q,(t) is related to the complex amplitude by 

T,(t) = i{A,(t) ei""yt +c.c.} = IA,(t)l cos @,(t). (13) 

Note that any non-zero amplitude A,  can arise from centrifugal effects only, which give 
a conical shape to the interface and can change, at a fixed radius, the mean thickness 
of the fluids. 

The second step of the signal processing is to recover the complex amplitude A,(t) 
from the real y n ( f ) ,  i.e. to reconstruct the imaginary part of A, ( f ) .  The latter can be 
obtained from the Hilbert transform of T,(t), whose effect is to shift by 7~/2 the 
instantaneous phase of qn(t). The Hilbert transform TH[q,(t)] is defined by (Melville 
1983): 

(14) 
1 

7Ct TH[T,(t>l = -- * T,(O = TF-Y-i sgn (4 TF [T,(t)l (41, 

where TF  is the Fourier transform and where * is the convolution operator. Thus, the 
complex amplitude is recovered as 

A,(t) ei""yt = T,(t) + i TH[?l,(r)], (1 5 )  

whose modulus and argument give the amplitude IA,(t)l and phase @,(t) of the 
harmonic. 

The first 30 s of each record have been discarded in order to avoid end effects due 
to filtering. We have verified that these techniques give pertinent results for 
quasi-monochromatic waves, whenever the timescale for the modulations is greater 
than three times the period of the wave. Before presenting the experimental results, we 
first turn to the theoretical predictions. 

5.3. Amplitude equations - the Landau-Stuart equation 

All the results presented in this subsection are dimensionless, with the lower layer 
thickness h, and the interface velocity U,  as characteristic scales. Long nonlinear 
interfacial waves ~ ( x ,  t )  in Couette-Poiseuille flow have been studied by Hooper & 
Grimshaw (1985) within the framework of the Kuramoto-Sivashinsky equation. This 
equation is derived under the assumptions Re = 0(1) and We = O(k2) where k is the 
small dimensionless wavenumber (high surface tension). Charru & Fabre (1994) 
computed the next order in the small parameter k, allowing a less restrictive condition 
for the Weber number, namely We = O(k). This next order introduces a linear 
dispersion term as well as other nonlinear terms of the same order. For amplitudes 
O(k), this equation is 

7, t + { c, T + T V +  7 W )  + Re,(R + TT) T , 5  + +we 7,555 },% = 0, (16) 

where the coefficients of the linear terms, c,, R ,  M and S, have been introduced in $3.3. 
The coefficients V and Ware functions of the parameters m and d, and T depends, like 
R,  on m, d, r and Fr. 

The assumptions Re = O(1) and We = O(k) leading to the above equation are not 
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satisfied in our experiments, for which Re = O(100) and We = O(1). Nevertheless, here 
we consider (16) as a model equation for long waves, one that takes into account 
dissipative and dispersive effects, as well as the stabilizing effect of surface tension. 

Searching for spatially periodic solutions, the interface can be developed in Fourier 
series (equation (9)). Inserting this expansion into the above interface equation, an 
infinite system of ordinary differential equations can be derived for the amplitudes 
A,(t): 

dt 

+ m  +m 

- _  - (c~, - in(n2 - 1) 8) A, + (ia + np)  2 pAp AnPp + ix pA, A, An.+,, 
dA 

p=--a, P, q=-m 

(174 

a = k , V ;  P=ik;Re,T; 8 = k ; M ;  x=iik,W, (17b) 
with 

where the linear angular frequency u? = o(k,) and the growth rate c ~ ,  = a(k,) are 
defined by (4). Note that the &term corrects for the linear frequency no!, which arises 
from the dispersive term in the wave equation. 

By keeping the first three harmonics, the following amplitude equations can be 
derived : 

(184 -- - al A, + (ia+p) AT A ,  + iXA; AT + k, O(A!), dA 
dt 

(18b) 

( 1 8 4  

-- - (g , -6 i8)A2+( ia+2/3)A:+kl  O(A:), dA 
dt 

dt 
dA, = (a, - 24iS) A, + 3(ia + 3p) A, A ,  + iXA: + k, O(A:). 

This dynamical system drives the time evolution of the complex ‘generalized 
coordinates’ A,. This system can be greatly simplified near criticality, where the 
fundamental mode is the only unstable mode, while the others are linearly strongly 
damped : 

Then the dynamics is controlled by the marginally unstable mode, to which the other 
modes are ‘slaved’ (Manneville 1990; Newell, Passot & Lega 1994). The arguments 
supporting this description are briefly outlined below. 

Linear stability results show that, as the upper plate velocity is increased, the first 
unstable wave is the longest one, here with wavenumber k,, for the Froude number 
Frc(kJ given by (5) .  As long as the Froude number is such that Frc(k,) < Fr < Fr,(2k1), 
the fundamental mode remains the only unstable one. According to (19), the timescale 
gil for the growth of the fundamental is much greater than the relaxation times 1cr;ll 
of the other harmonics, so that 

v1 > 0, c ~ ,  < 0 with Ia,l 9 a, for n 2 2. (19) 

(20) 
dAn - - a, A, < la,/ A, for n 2 2. 
dt 

Thus, from (18), the dynamics of the harmonics is ‘slaved’ to the dynamics of the 
fundamental harmonic, according to 
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for A,, and similarly for A , :  
A ,  - A ; + k ,  O(A!). 

From these relations, it follows that the amplitude and phase of each harmonic is 
linked to those of the fundamental harmonic through the relations 

lAnl = const. IAJ" and $,(t) = n$,(t)+const. (22) 

Thus, although the harmonics are linearly stable (cn < 0), they grow through 
nonlinear interactions, with energy supplied by the fundamental harmonic. Their 
actual growth rate satisfies 

The dynamics of the system is governed by the marginally unstable fundamental 
harmonic. From (21 a) and (18a), this fundamental harmonic obeys the Landau-Stuart 
equation 

where K is the complex Landau-Stuart constant whose explicit expression can be easily 
obtained. Its real part K, corresponds to nonlinear dissipation, and its imaginary part 
K~ to nonlinear frequency correction. The KuramotwSivashinsky truncation of (1 6) 
(obtained for W = T = M = 0) leads to a real positive Landau-Stuart constant, 
corresponding to supercritical instability without any nonlinear frequency variation. 
On the other hand, considering the complete (16), the real part K, of the Landau-Stuart 
constant could be negative, for example for 6 =  0 and a2 < 2p2, i.e. M =  0 and 
2 V 2  < k: Re; T 2 .  Strictly speaking, this relation violates the assumptions under which 
(16) is derived (k ,  < 1, V -  T - Re, - l), but it could account for the subcritical 
instability reported here (figure 10 b). 

The Landau-Stuart equation has already been obtained by Renardy (1989) from the 
point of view of the central manifold theorem, using numerically computed eigenvalues 
and eigenfunctions. Unfortunately, Renardy's values of K correspond to wavenumbers 
greater than unity, and cannot be compared with long-wave predictions. 

5.4. Harmonics evolution near the onset of instability 
Near the onset of instability, and for given flow conditions (same fluids, same upper 
plate velocity), each run exhibits the same transient and leads to the same periodic 
saturated wave. Figure 16 displays the experimental behaviour of the harmonics for 
upper plate velocity U = 1.13 U,. The time evolution is drawn in figure 16 (a) : the wave 
grows and saturates after about 1200 s. The period at saturation is cat = 11.1 s. 

The time evolutions of the amplitudes of the first three harmonics are depicted in 
figure 16(b) (time is normalized with the period at saturation Tat). At the outset the 
wave is monochromatic. Harmonics then successively emerge, and simultaneously 
reach saturation. A more accurate view can be gained with a logarithmic plot of the 
amplitudes. Figure 16(d) clearly displays, for each harmonic, three distinct stages: an 
exponential growth, a transition stage and a saturation stage. As predicted by the 
theoretical analysis, (22), the amplitude ratios lAnl/lA,l" remain constant from the 
birth of the harmonics up to saturation (figure 16e). 

The time evolution of the phases @"(t), defined by (12a), is plotted in figure 16(c). 
They are nearly linear, with slope proportional to the order n of the harmonic. This 
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linear behaviour supports the aforementioned decomposition of the phase into one 
rapidly varying term nwy t, where wy is the linear angular frequency of the fundamental 
harmonic, and one slowly varying term $,(t). 

The deviation from linearity can be magnified by subtracting from the phase @,(t) 
its rapidly varying part nwy t ,  in order to reveal the slow phase $,(t) (figure 16f). The 
frequency wy of the fundamental harmonic has been determined as 

f3; = W ( k , ,  t + 0)  (25) 

by linear fitting of the phase Gl(t)  in the exponential growth stage by a least-squares 
method. As for the amplitude, the time evolution of the slow phase $,(t) exhibits three 
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w,"/wp w;/w;a w F / w ;  

2.000 3.000 0.998 

TABLE 3. Frequency ratios for U = 1.13UL 

stages, at least for the first two harmonics. In the exponential stage, $,(t) and $z(t) 
remain constant, whereas $,(t) is not defined since A ,  has not yet emerged. Thus, 
according to (12b), the frequency of the second harmonic is twice the fundamental 
harmonic one. In the transition stage, the slow phases decrease; their time derivatives 
decrease as well, corresponding to decreasing wave frequencies. In the saturation stage, 
the $n(t) decrease with constant slope proportional to the order of the harmonic: this 
means that the frequencies at saturation, determined as 

(26) 

are locked to multiples of the fundamental frequency (table 3). The frequency shift is 
about 0.2 % between the exponential growth and saturation stages. 

These observations are made clearer by plotting of the phase differences (figure 16g) 

w" = , - 4k, ,  t+  a), 

@,(t)--@,(t) = $n(t)-n$,(t), n = 2,3 (27) 

that compare the phase of the harmonics to the fundamental one. These phase 
differences can be seen as the relative spatial position of the nth harmonic with respect 
to the fundamental. They appear to remain constant from the birth of the harmonics 
up to saturation, as predicted by theoretical analysis, (22). They are close to 3n/4 for 
n = 2, and close to -x/2 for n = 3. 

Finally, for U = 1.13UL, the complex amplitudes A ,  and A ,  are proportional to A: 
and A: respectively, as shown by the constant values of amplitude ratios (figure 16e) 
and phase differences (figure 16g): the validity of the analysis in terms of central and 
slaved modes is thus confirmed. 

As the upper plate velocity is increased further, the amplitude of the wave, and 
consequently that of the harmonics, increases. Figure 17 shows the time evolution of 
the amplitude and phases of the first three harmonics for upper plate velocity 
U = 1.33UL. These evolutions are qualitatively the same as for U = 1.13UL. The time 
evolution is presented in figure 17(a). The logarithmic plot of the amplitudes (figure 
17b) shows the monochromatic character of the wave in the early stages of its growth. 
The plot of the amplitude ratios lA,l/lA,l" shows that these ratios remain constant as 
soon as the harmonics emerge (figure 17c). 

The slowly varying phase $,(t) exhibits qualitatively the same behaviour as for 
U = 1.13 U, (figure 17 d). Nevertheless, it appears that during the growth period, phase 
differences are no longer constant and decrease very slowly (figure 17e). Since the 
phase difference is related to the relative wave velocity c, - c1 through 

the above decrease of the phase differences corresponds to small dispersive effects. 
Phase differences and amplitudes reach their saturation value simultaneously, and the 
frequencies are then locked. The values of the phase differences at saturation, which 
determine the wave shape, appear to be approximately the same as for U = 1.13UL. 
The dispersive behaviour is the precursor of more complex ones, e.g. harmonics 
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1.13 2.6 0.5677 0.0835 0.404 
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TABLE 4. Numerical values of the coefficients of the Landau-Stuart equation, computed from the 
least-squares method. K, is the only coefficient to be sensitive to the calibration of amplitude 

gaining autonomy, and it shows the limits of an approach based on central and slaved 
modes. 

As an ultimate confirmation of the validity of the model, the coefficients of the 
Landau-Stuart equation for the complex amplitude A ,  can now be determined. This 
can be achieved by computing numerically the time derivatives dlA,l/dt and d#,/dt 
from the time series of [All and $,, and then fitting the numerical coefficients of the 
Landau-Stuart equation using a least-squares method. With these coefficients (table 4), 
the numerical solution of the Landau-Stuart equation may be compared to the original 
time series for [All and As expected, close agreement is found from the 
Landau-Stuart equation truncated to the cubic term : the numerical reconstruction 
exactly fits the traces of the amplitude lAll and of the phase shown in figures 16(b) 
and 1 6 0 .  As expected from the decrease of the slow phases in the nonlinear regime 
(figures 16f and 17 d), the imaginary part of the Landau-Stuart constant is non-zero. 
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Finally, it can be said that up to U x 1.4UL, the experimental results qualitatively 
agree with all the aspects of the central and slaved modes analysis. 

Figure 18 displays results for the growth rate and the frequency of the first three 
harmonics as the upper plate velocity is increased. The growth rates, presented in figure 
18(a), were obtained by a linear fitting to log (IA,I) in the exponential growth zone. The 
growth rate v1 of the fundamental harmonic remains very low, at most 2 x lo-' s-l. It 
is a linear function of the distance to the threshold, as predicted by the theory, but this 
linear behaviour still exists away from the threshold. Near the critical velocity, the 
growth rate of the nth harmonic is equal to nn, according to (23). For higher velocities, 
these growth rates experience large variations during transients, and these variations 
differ from one run to another. This is why these growth rates are plotted for 
U < 1.4UL only, which appears to be the domain of validity of the central and slaved 
modes analysis. 

The linear frequency wy and the frequency shift (wy  - w ~ ) / w y  of the fundamental 
harmonic are presented in figures 18(b) and 18(c) respectively. Like the growth rates, 
they exhibit a linear behaviour in a wide range of upper plate velocities. The frequency 
shift due to finite amplitude effects is always negative, corresponding to a decrease of 
the wave velocity from its birth up to saturation. It stays lower than 1.5 YO of the linear 
frequency. 

5.5. The rebellion of the slaved modes 
For an upper plate velocity higher than 1.4UL, each run of the experiment still leads 
to the same periodic wave for given flow conditions. However, a new phenomenon 
arises: the transient ceases to be unique, it differs from one run to another. This is 
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FIGURE 20. Time evolution of the interface, and amplitude and phase of the first three harmonics 
for U / U L  = 1.58. Flow parameters: see figure 12. T,,, = 8.1 s. 

evident in figure 19, which shows two runs for U = 2UL. Despite these different 
behaviours, these transients have in common an amazing feature: the growth of the 
harmonics is marked by sharp frequency locking between them, related to the collapse 
of their amplitude. This striking feature is illustrated by two examples. 

Figure 20 displays the transient for U =  1.58UL. The time evolution (figure 20a) 
looks qualitatively the same as for lower velocity. Nevertheless, closer observation 
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shows the existence of a little hump, sliding on the fundamental during the first growth 
stage. This hump corresponds to the emancipated second harmonic running faster than 
the fundamental, with amplitude much larger than previously (figure 20 b). Whereas 
the fundamental harmonic A ,  grows smoothly, the second harmonic A ,  stops growing 
and even decreases, before growing again at a rate roughly three times faster than that 
of A, .  The amplitude ratios IA,I/IA,ln confirm clearly that the higher harmonics are no 
longer slaved to the fundamental (figure 20c). 

The slow phases 4, are shown in figure 20(d) .  Whereas 4, decreases without any 
accident, the slow phase $2 first increases, then sharply decreases and finally behaves 
as previously; 4, exhibits the same behaviour. The significance of these behaviours 
appears in the phase differences (figure 20e). According to (28), the velocity differences 
or frequency differences may be read as the slope of these curves. It appears that A ,  first 
travels faster than A,,  and then suddenly brakes when its amplitude is at a minimum, 
and adjusts its velocity to that of A,.  This velocity or frequency locking occurs very 
early, taking advantage of a propitious phase difference. On the other hand, A,  not 
only follows A ,  as previously, but appears to be strongly influenced by the evolution 
of A,. The phase differences at saturation keep approximately the same value that they 
had previously. 

These behaviours are magnified as the upper plate velocity is increased further 
(figure 21, U = 2.25UL). The time evolution (figure 21 a) now shows more clearly the 
existence of a sliding hump at the beginning. Turning to the evolution of the harmonics 
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(figure 2 1 ke) ,  it appears that the fundamental harmonic grows exponentially as usual, 
ignoring the complicated stories of its small brothers, but suddenly saturates and then 
relaxes gradually to its saturation value. The second harmonic A ,  has qualitatively the 
same behaviour as previously. It travels with constant velocity 1.0% faster than A,, 
until it collapses and brakes suddenly, locking its velocity to that of A,.  The third 
harmonic A ,  collapses twice. The first time, it adjusts its velocity to A,, and the second 
time, to the common velocity of A ,  and A,. The relative phase q52-2q51 experiences a 
jump of - n/2 concomitant with the collapse of A,,  and q5, - 3q5, experiences a jump 
of n concomitant with the second collapse of A,.  

The dispersive character of the waves plays a crucial role in the occurrence of these 
amplitude collapses and frequency locking. This may be understood within the 
framework of (18) after separation of modulus and phase of the complex amplitudes. 
The translational invariance of (1 6) implies that only phase differences are relevant. 
Thus, the equations for the moduli lAll and JA,I and for the phase difference 
A# = q5, - 2q5, are 

IA 1, 
dt lAzl 
* = -66-2x IA,12-21A,I (acosAq5+PsinAq5) + L ( o l c o s  Aq5-2PsinAq5). (29c) 

The linear increase of Aq5 shown on figure 21 (e) at the beginning of the growth can only 
come from the linear dispersive term S in (29c). Such a variation of Aq5 leads to the 
change of sign of the nonlinear term of (29b) and consequently to the damping of the 
second harmonic and its collapse. The last term in (29c) thus becomes very large, 
leading to the quick variation of Aq5 shown on figure 21 (e). The subsequent frequency 
locking seems out of reach of a simple explanation, but it can be reproduced by 
numerical integration of (29). 

Owing to the random character of the initial phases and amplitudes, the details of 
the occurrence of amplitude collapses and frequency locking may vary. This explains 
the variability of the transients from one run to another mentioned at the beginning of 
this subsection. 

5.6. The battle of the chiefs: bistability 
As the upper plate velocity is increased further ( U  > 2.4UL), two different saturated 
waves can be observed for the same flow conditions, as shown on figure 22. The 
saturated wave is dominated either by the fundamental harmonic (one wavelength in 
the channel) or by the second harmonic (two wavelengths in the channel). This 
corresponds to bistability, the final state evidently depending on the random noise 
from which unstable modes emerge. 

Transients leading to each wave are displayed in figures 23 and 24 (U = 2.43UL). 
On the one hand, figure 23 shows the gentle growth of the five first harmonics, up to 
the saturated wave dominated by the fundamental harmonic (phase evolutions appear 
meaningless and have not been reported here). This evolution is just perturbed by the 
momentary collapse of A,, which passes on each harmonic successively. On the other 
hand, figure 24 shows a different response: the fundamental harmonic first dominates, 
but then decays and finally vanishes, whereas the second eventually dominates after 
several oscillations. It seems that A ,  and A ,  have opposite growth rates, the one 
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FIGURE 23. Time evolution of the interface, and amplitude of the first harmonics for U / U ,  = 2.43. 
Flow parameters: see figure 12. The final state is dominated by the fundamental harmonic. 
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FIGURE 24. Time evolution of the interface, and amplitude of the five first harmonics for 
U / U ,  = 2.43. Flow parameters: see figure 12. The final state is dominated by the second harmonic. 

growing while the other decays, suggesting cyclic energy exchange between harmonics. 
The harmonics A ,  and A,  display the same cyclic energy exchange. For the transient 
shown on figure 24, the saturated wave shown on figure 22 has not yet been reached. 

6. Summary and discussion 
Experimental results on the interfacial stability of two-layered Couette flow have 

been presented. Experiments were performed in a channel bent into an annular ring, 
so that the wavenumber spectrum was discrete and the wave evolution could be 
observed over very long times. Two kinds of interfacial waves were observed, 
depending on the viscosity ratio and thickness ratios : they correspond to long-wave 
instability and k = O(1) instability. This paper is focused on the long-wave instability. 

The long wave appears with wavelength equal to the perimeter of the channel, 
beyond some critical velocity U ,  of the upper plate. The comparison with the long- 
wave stability analysis of Yih reveals that experimental critical velocities are roughly 
three times smaller than the predicted ones. However, the critical velocities correspond 
to Reynolds numbers of about 400, for which the basic flow departs from Couette flow 
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FIGURE 25. Phase portraits in the plane ([A,[, &I). (a) U / U ,  = 1.13; (b) U / U ,  = 1.58; (c) U / U ,  = 2; 
( d )  U / U ,  = 12.43. Each trace corresponds to one run. SW: saturated wave. Flow parameters: see 
figure 12. 

owing to centrifugal effects. When the actual velocity profile is taken into account in 
the stability analysis, the overestimation is reduced to 75 %. The remaining discrepancy 
is probably due to the destabilizing effect of the secondary flow. 

The bifurcation is generally supercritical, but it is subcritical for thickness ratio close 
to unity. The critical exponents of the supercritical bifurcation have been calculated 
and they agree with the classical Landau theory. 

The supercritical long wave arises from a soft instability, with a growth rate of about 
s-l, and original insight on the nonlinear wave dynamics was gained from the 

study of the long transients. The study was carried out within the theoretical 
framework of amplitude equations for confined systems, obtained from the long-wave 
interface equation derived by Charru & Fabre (1994). The amplitude and phase of each 
harmonic were accurately obtained by using the Hilbert transformation. The results 
are illustrated in terms of dynamical systems on figure 25, which shows the trajectories 
of the system projected onto the plane (IAJ, &I), for various upper plate velocities. 
These plots allow the time to be eliminated and attention to be focused on the related 
dynamics of A ,  and A,.  For each upper plate velocity, two trajectories are plotted, 
corresponding to the same flow conditions. 

Near the onset of instability, the fundamental harmonic is the only unstable one, and 
the time evolution of the harmonics closely follows the analysis in terms of central and 
slaved modes. Indeed, the fundamental follows the Landau-Stuart equation, and the 
amplitude ratios JA,(/IA,ln and the phase differences q3n - remain constant during 
the growth up to saturation. These results are illustrated on figure 25(a). The two 
trajectories leading from the origin (flat interface) to the unique fixed point (saturated 
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wave) are merged. The trajectory is a parabola, according to the slaved mode theory. 
This parabola can be viewed as an experimental centre manifold which strongly 
attracts the random initial point, quickly enough for the different runs to be 
indistinguishable. 

As the upper plate velocity is increased (U > 1.4UL), the transients are more 
complicated and can vary significantly from one run to another, but they always lead 
to the same saturated wave for given flow conditions. The typical behaviour of these 
transients can be described as follows. At the beginning, the second harmonic first 
travels faster than the fundamental. The relative velocity has been shown to be 
constant during this stage, and corresponds to linear dispersion. Then the second 
harmonic suddenly brakes and adjusts its velocity to the fundamental, through a 
remarkable collapse of its amplitude and through a phase jump. Velocities and thus 
frequencies then remain locked. The third harmonic behaves similarly. Differences in 
the details of the transients are due to random initial amplitudes and phases of the 
harmonics when they emerge from noise. This is illustrated on figure 25(b) 
( U  = 1.58UL) : the two trajectories first diverge, then merge and lead to the fixed point. 
For higher upper plate velocity (figure 25c, U = 2UL) the trajectories are completely 
different, but still lead to the same fixed point. 

Far from the threshold (U > 2.4UL), two different saturated waves were observed for 
the same flow conditions, corresponding to bistability. The first wave is dominated by 
the fundamental harmonic whereas the second wave is dominated by the second 
harmonic. The latter wave is reached after periodic energy exchange between A ,  and 
A ,  on the one hand, and between A ,  and A ,  on the other hand, while A ,  vanishes. 
Figure 25(d) shows, for U = 2.43UL, two trajectories leading to each of the two fixed 
points. The observed saturated wave depends on random initial conditions which 
belong to the basin of attraction of one or other fixed point. 

The experimental results can now be compared to numerical simulations of spatially 
periodic solutions of model equations describing long waves on sheared interfaces. The 
essential features of the observed waves are the following: asymmetry of the wave 
shape at the threshold of instability, linear dispersion, bistability and absence of 
chaotic behaviour under the explored flow conditions. The asymmetry of the wave 
shape can be related to the absence of reflectional invariance for the basic flow (the 
viscosity difference allows the right and left sides to be defined unambiguously). 
However, this asymmetry cannot be rendered by the KS equation, whose solutions 
resulting from the primary instability have reflectional invariance. The experimental 
observations can be better reproduced when a linear dispersive term T , ~ ~ ~  is taken into 
account (i.e. with the KdV-KS equation). Indeed, this term breaks the reflectional 
invariance and stabilizes the stationary solutions, as shown by Chang et al. (1993). 
Finally, the observed bistability can be related to numerical results obtained by Tilley, 
Davis & Bankoff (1994), for long waves in two-layer Poiseuille flow in an inclined 
channel. Their bistability, namely two travelling waves with different amplitudes, was 
exhibited from the ' 3KS equation', which includes the cubic nonlinearity ~ ~ 7 , ~  to the 
KS equation (for horizontal channels, the 3KS equation is (16) with T = M = 0). This 
cubic nonlinearity breaks the same symmetry as the linear dispersive term, and 
corresponds in fact to nonlinear dispersion. 

We thank J. Dusek and 0. Thual for stimulating discussions, and D. Legendre for 
the direct numerical simulations of the basic flow. We are also grateful to J. J. Huc for 
his care in manufacturing the experimental device. 



Interfacial long waves in a two-layer shear flow 53 

R E F E R E N C E S  

CHANG, H. C. ,  DEMEKHIN, E. A. & KOPELEVICH, D. I. 1993 Laminarizing effects of dispersion in an 
active-dissipative nonlinear medium. Physica D 63, 299. 

CHARLES, M. E. & LILLELEHT, L. U. 1965 An experimental investigation of stability and interfacial 
waves in a co-current flow of two liquids. J .  Fluid Mech. 22, 217. 

CHARRU, F. 1991 Stabilitt de I’interface entre deux fluides visqueux. Thkse de Doctorat, Institut 
National Polytechnique de Toulouse. 

CHARRU, F. & FABRE, J. 1994 Long waves at the interface between two viscous fluids. Phys. Fluids 
6, 1223. 

COHEN, B. I., KROMMES, J. A., TANG, W. M. & ROSENBLUTH, M. N. 1976 Non-linear saturation of 
the dissipative trapped-ion mode by mode coupling. Nucl. Fusion 16, 971. 

DEMEKHIN, E. A,, TOKAREV, G. Y. & SHKADOV, V. YA. 1991 Hierarchy of bifurcations of space- 
periodic structures in a nonlinear model of active dissipative media. Physica D 52, 338. 

HINCH, E. J .  1984 A note on the mechanism of the instability at the interface between two shearing 
fluids. J .  Fluid Mech. 144, 463. 

HOOPER, A. P. 1985 Long-wave instability at the interface between two viscous fluids: Thin layer 
effects. Phys. Fluids 28, 1613. 

HOOPER, A. P. & BOYD, W. G. C. 1983 Shear-flow instability at the interface between two viscous 
fluids. J .  Fluid Mech. 128, 507. 

HOOPER, A. P. & BOYD, W. G. C. 1987 Shear flow instability due to a wall and a viscosity difference 
at  the interface. J .  Fluid Mech. 179, 201. 

HOOPER, A. P. & GRIMSHAW, R. 1985 Nonlinear instability at the interface between two viscous 
fluids. Phys. Fluids 28, 37. 

KAO, M. E. & PARK, C. 1972 Experimental investigation of the stability of channel flow. J.  Fluid 
Mech. 52, 40 1. 

KELLY, R. E., GOUSSIS, D. A., LIN, S. P. & Hsu, F. K. 1989 The mechanism for surface wave 
instability in film flow down an inclined plane. Phys. Fluids A 1, 819. 

KEVREKIDIS, I. G., NICOLAENKO, B. & SCOWL, J. C. 1990 Back in the saddle again: a computer 
assisted study of the KuramotG3vashinsky equation. SIAM J. Appl. Maths 50, 760. 

LIU, J., PAUL, J. D. & GOLLUB, J. P. 1993 Measurements of the primary instabilities of film flows. 
J .  Fluid Mech. 250, 69. 

MAGNAUDET, J., RIVERO, M. & FABRE, J. 1995 Accelerated flows around a rigid sphere or a spherical 
bubble. Part 1. Steady straining flow. J .  Fluid Mech. 284, 97. 

MANNEVILLE, P. 1990 Dissipative Structures and Weak Turbulence. Academic. 
MELVILLE, W. K. 1983 Wave modulation and breakdown. J.  Fluid Mech. 128, 489. 
NEWELL, A. C., PASSOT, T. & LEGA, J .  1993 Order parameter equations for patterns. Ann. Rev. Fluid 

Mech. 25, 399. 
RENARDY, Y. 1985 Instability at the interface between two shearing fluids in a channel. Phys. Fluids 

28, 3441. 
RENARDY, Y. 1987 The thin layer effect and interfacial stability in a two-layer Couette flow with 

similar liquids. Phys. Fluids 30, 1627. 
RENARDY, Y. 1989 Weakly nonlinear behavior of periodic disturbances in two layer Couette- 

Poiseuille flow. Phys. Fluids A 1, 1666. 
SHLANG, T., SIVASHINSKI, G .  I., BABCHIN, A. J. & FRENKEL, A. L. 1985 Irregular wavy flow due to 

viscous stratification. J .  Phys. Paris 46, 863. 
SMITH, M. K. 1990 The mechanism for the long-wave instability in thin liquid films. J.  Fluid Mech. 

217, 469. 
TILLEY, B. S., DAVIS, S. H. & BANKOFF, S. G. 1994 Nonlinear long-wave stability of superposed fluids 

in an inclined channel. J .  Fluid Mech. 277, 55. 
YIANTSIOS, S. G. & HIGGINS, B. G. 1988 Linear stability of plane Poiseuille flow of two superposed 

fluids. Phys. Fluids 31, 3225. 
YIH, C. S. 1967 Instability due to viscous stratification. J.  Fluid Mech. 27, 337. 




